\(\int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [1086]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 357 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {2 \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (5 a^3 B+21 a b^2 B+7 b^3 (A+3 C)+3 a^2 b (5 A+7 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (8 A b^3+15 a^3 B+54 a b^2 B+9 a^2 b (5 A+7 C)\right ) \sin (c+d x)}{63 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[Out]

-2/15*(27*B*a^2*b+15*B*b^3+9*a*b^2*(3*A+5*C)+a^3*(7*A+9*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El
lipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*(5*B*a^3+21*B*a*b^2+7*b^3*(A+3*C)+3*a^2*b*(5*A+7*C))*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/315*a*(24*A*b^2+99*B*a*b+7*a^2*(7*
A+9*C))*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/63*(8*A*b^3+15*B*a^3+54*B*a*b^2+9*a^2*b*(5*A+7*C))*sin(d*x+c)/d/cos(d*
x+c)^(3/2)+2/21*(2*A*b+3*B*a)*(a+b*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(7/2)+2/9*A*(a+b*cos(d*x+c))^3*sin(d*
x+c)/d/cos(d*x+c)^(9/2)+2/15*(27*B*a^2*b+15*B*b^3+9*a*b^2*(3*A+5*C)+a^3*(7*A+9*C))*sin(d*x+c)/d/cos(d*x+c)^(1/
2)

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 357, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {3126, 3110, 3100, 2827, 2716, 2719, 2720} \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 a \sin (c+d x) \left (7 a^2 (7 A+9 C)+99 a b B+24 A b^2\right )}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (5 a^3 B+3 a^2 b (5 A+7 C)+21 a b^2 B+7 b^3 (A+3 C)\right )}{21 d}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (a^3 (7 A+9 C)+27 a^2 b B+9 a b^2 (3 A+5 C)+15 b^3 B\right )}{15 d}+\frac {2 \sin (c+d x) \left (15 a^3 B+9 a^2 b (5 A+7 C)+54 a b^2 B+8 A b^3\right )}{63 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \sin (c+d x) \left (a^3 (7 A+9 C)+27 a^2 b B+9 a b^2 (3 A+5 C)+15 b^3 B\right )}{15 d \sqrt {\cos (c+d x)}}+\frac {2 (3 a B+2 A b) \sin (c+d x) (a+b \cos (c+d x))^2}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^3}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Int[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(-2*(27*a^2*b*B + 15*b^3*B + 9*a*b^2*(3*A + 5*C) + a^3*(7*A + 9*C))*EllipticE[(c + d*x)/2, 2])/(15*d) + (2*(5*
a^3*B + 21*a*b^2*B + 7*b^3*(A + 3*C) + 3*a^2*b*(5*A + 7*C))*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*a*(24*A*b^2
 + 99*a*b*B + 7*a^2*(7*A + 9*C))*Sin[c + d*x])/(315*d*Cos[c + d*x]^(5/2)) + (2*(8*A*b^3 + 15*a^3*B + 54*a*b^2*
B + 9*a^2*b*(5*A + 7*C))*Sin[c + d*x])/(63*d*Cos[c + d*x]^(3/2)) + (2*(27*a^2*b*B + 15*b^3*B + 9*a*b^2*(3*A +
5*C) + a^3*(7*A + 9*C))*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]) + (2*(2*A*b + 3*a*B)*(a + b*Cos[c + d*x])^2*Si
n[c + d*x])/(21*d*Cos[c + d*x]^(7/2)) + (2*A*(a + b*Cos[c + d*x])^3*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2}{9} \int \frac {(a+b \cos (c+d x))^2 \left (\frac {3}{2} (2 A b+3 a B)+\frac {1}{2} (7 a A+9 b B+9 a C) \cos (c+d x)+\frac {1}{2} b (A+9 C) \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = \frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4}{63} \int \frac {(a+b \cos (c+d x)) \left (\frac {1}{4} \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right )+\frac {1}{4} \left (86 a A b+45 a^2 B+63 b^2 B+126 a b C\right ) \cos (c+d x)+\frac {1}{4} b (13 A b+9 a B+63 b C) \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}-\frac {8}{315} \int \frac {-\frac {15}{8} \left (8 A b^3+15 a^3 B+54 a b^2 B+9 a^2 b (5 A+7 C)\right )-\frac {21}{8} \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) \cos (c+d x)-\frac {5}{8} b^2 (13 A b+9 a B+63 b C) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (8 A b^3+15 a^3 B+54 a b^2 B+9 a^2 b (5 A+7 C)\right ) \sin (c+d x)}{63 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}-\frac {16}{945} \int \frac {-\frac {63}{16} \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right )-\frac {45}{16} \left (5 a^3 B+21 a b^2 B+7 b^3 (A+3 C)+3 a^2 b (5 A+7 C)\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (8 A b^3+15 a^3 B+54 a b^2 B+9 a^2 b (5 A+7 C)\right ) \sin (c+d x)}{63 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}-\frac {1}{21} \left (-5 a^3 B-21 a b^2 B-7 b^3 (A+3 C)-3 a^2 b (5 A+7 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{15} \left (-27 a^2 b B-15 b^3 B-9 a b^2 (3 A+5 C)-a^3 (7 A+9 C)\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 \left (5 a^3 B+21 a b^2 B+7 b^3 (A+3 C)+3 a^2 b (5 A+7 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (8 A b^3+15 a^3 B+54 a b^2 B+9 a^2 b (5 A+7 C)\right ) \sin (c+d x)}{63 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}-\frac {1}{15} \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 \left (5 a^3 B+21 a b^2 B+7 b^3 (A+3 C)+3 a^2 b (5 A+7 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a \left (24 A b^2+99 a b B+7 a^2 (7 A+9 C)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (8 A b^3+15 a^3 B+54 a b^2 B+9 a^2 b (5 A+7 C)\right ) \sin (c+d x)}{63 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (27 a^2 b B+15 b^3 B+9 a b^2 (3 A+5 C)+a^3 (7 A+9 C)\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 (2 A b+3 a B) (a+b \cos (c+d x))^2 \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 11.03 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.16 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 \left (-49 a^3 A-189 a A b^2-189 a^2 b B-105 b^3 B-63 a^3 C-315 a b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (75 a^2 A b+35 A b^3+25 a^3 B+105 a b^2 B+105 a^2 b C+105 b^3 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{105 d}+\frac {\sqrt {\cos (c+d x)} \left (\frac {2}{7} \sec ^4(c+d x) \left (3 a^2 A b \sin (c+d x)+a^3 B \sin (c+d x)\right )+\frac {2}{45} \sec ^3(c+d x) \left (7 a^3 A \sin (c+d x)+27 a A b^2 \sin (c+d x)+27 a^2 b B \sin (c+d x)+9 a^3 C \sin (c+d x)\right )+\frac {2}{21} \sec ^2(c+d x) \left (15 a^2 A b \sin (c+d x)+7 A b^3 \sin (c+d x)+5 a^3 B \sin (c+d x)+21 a b^2 B \sin (c+d x)+21 a^2 b C \sin (c+d x)\right )+\frac {2}{15} \sec (c+d x) \left (7 a^3 A \sin (c+d x)+27 a A b^2 \sin (c+d x)+27 a^2 b B \sin (c+d x)+15 b^3 B \sin (c+d x)+9 a^3 C \sin (c+d x)+45 a b^2 C \sin (c+d x)\right )+\frac {2}{9} a^3 A \sec ^4(c+d x) \tan (c+d x)\right )}{d} \]

[In]

Integrate[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(2*(-49*a^3*A - 189*a*A*b^2 - 189*a^2*b*B - 105*b^3*B - 63*a^3*C - 315*a*b^2*C)*EllipticE[(c + d*x)/2, 2] + 2*
(75*a^2*A*b + 35*A*b^3 + 25*a^3*B + 105*a*b^2*B + 105*a^2*b*C + 105*b^3*C)*EllipticF[(c + d*x)/2, 2])/(105*d)
+ (Sqrt[Cos[c + d*x]]*((2*Sec[c + d*x]^4*(3*a^2*A*b*Sin[c + d*x] + a^3*B*Sin[c + d*x]))/7 + (2*Sec[c + d*x]^3*
(7*a^3*A*Sin[c + d*x] + 27*a*A*b^2*Sin[c + d*x] + 27*a^2*b*B*Sin[c + d*x] + 9*a^3*C*Sin[c + d*x]))/45 + (2*Sec
[c + d*x]^2*(15*a^2*A*b*Sin[c + d*x] + 7*A*b^3*Sin[c + d*x] + 5*a^3*B*Sin[c + d*x] + 21*a*b^2*B*Sin[c + d*x] +
 21*a^2*b*C*Sin[c + d*x]))/21 + (2*Sec[c + d*x]*(7*a^3*A*Sin[c + d*x] + 27*a*A*b^2*Sin[c + d*x] + 27*a^2*b*B*S
in[c + d*x] + 15*b^3*B*Sin[c + d*x] + 9*a^3*C*Sin[c + d*x] + 45*a*b^2*C*Sin[c + d*x]))/15 + (2*a^3*A*Sec[c + d
*x]^4*Tan[c + d*x])/9))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1264\) vs. \(2(385)=770\).

Time = 8.99 (sec) , antiderivative size = 1265, normalized size of antiderivative = 3.54

method result size
default \(\text {Expression too large to display}\) \(1265\)
parts \(\text {Expression too large to display}\) \(1467\)

[In]

int((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)+2*A*a^3*(-1/144*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^
2-1/2)^5-7/180*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1
/2)^3-14/15*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+
7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)
^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(c
os(1/2*d*x+1/2*c),2^(1/2))))+2*b^2*(B*b+3*C*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*a^2*(3*A*b+B*a)*(-1/56*cos(1/2*d*x+1
/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c
)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2)))+2/5*a*(3*A*b^2+3*B*a*b+C*a^2)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/
2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*
x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1
/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/
2*d*x+1/2*c)^2)^(1/2)+2*b*(A*b^2+3*B*a*b+3*C*a^2)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1
/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1
/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 467, normalized size of antiderivative = 1.31 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {15 \, \sqrt {2} {\left (5 i \, B a^{3} + 3 i \, {\left (5 \, A + 7 \, C\right )} a^{2} b + 21 i \, B a b^{2} + 7 i \, {\left (A + 3 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 15 \, \sqrt {2} {\left (-5 i \, B a^{3} - 3 i \, {\left (5 \, A + 7 \, C\right )} a^{2} b - 21 i \, B a b^{2} - 7 i \, {\left (A + 3 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (i \, {\left (7 \, A + 9 \, C\right )} a^{3} + 27 i \, B a^{2} b + 9 i \, {\left (3 \, A + 5 \, C\right )} a b^{2} + 15 i \, B b^{3}\right )} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (-i \, {\left (7 \, A + 9 \, C\right )} a^{3} - 27 i \, B a^{2} b - 9 i \, {\left (3 \, A + 5 \, C\right )} a b^{2} - 15 i \, B b^{3}\right )} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (21 \, {\left ({\left (7 \, A + 9 \, C\right )} a^{3} + 27 \, B a^{2} b + 9 \, {\left (3 \, A + 5 \, C\right )} a b^{2} + 15 \, B b^{3}\right )} \cos \left (d x + c\right )^{4} + 35 \, A a^{3} + 15 \, {\left (5 \, B a^{3} + 3 \, {\left (5 \, A + 7 \, C\right )} a^{2} b + 21 \, B a b^{2} + 7 \, A b^{3}\right )} \cos \left (d x + c\right )^{3} + 7 \, {\left ({\left (7 \, A + 9 \, C\right )} a^{3} + 27 \, B a^{2} b + 27 \, A a b^{2}\right )} \cos \left (d x + c\right )^{2} + 45 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, d \cos \left (d x + c\right )^{5}} \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

-1/315*(15*sqrt(2)*(5*I*B*a^3 + 3*I*(5*A + 7*C)*a^2*b + 21*I*B*a*b^2 + 7*I*(A + 3*C)*b^3)*cos(d*x + c)^5*weier
strassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 15*sqrt(2)*(-5*I*B*a^3 - 3*I*(5*A + 7*C)*a^2*b - 21*I*B
*a*b^2 - 7*I*(A + 3*C)*b^3)*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*sqrt
(2)*(I*(7*A + 9*C)*a^3 + 27*I*B*a^2*b + 9*I*(3*A + 5*C)*a*b^2 + 15*I*B*b^3)*cos(d*x + c)^5*weierstrassZeta(-4,
 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(-I*(7*A + 9*C)*a^3 - 27*I*B*a^2*b
 - 9*I*(3*A + 5*C)*a*b^2 - 15*I*B*b^3)*cos(d*x + c)^5*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*
x + c) - I*sin(d*x + c))) - 2*(21*((7*A + 9*C)*a^3 + 27*B*a^2*b + 9*(3*A + 5*C)*a*b^2 + 15*B*b^3)*cos(d*x + c)
^4 + 35*A*a^3 + 15*(5*B*a^3 + 3*(5*A + 7*C)*a^2*b + 21*B*a*b^2 + 7*A*b^3)*cos(d*x + c)^3 + 7*((7*A + 9*C)*a^3
+ 27*B*a^2*b + 27*A*a*b^2)*cos(d*x + c)^2 + 45*(B*a^3 + 3*A*a^2*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
c))/(d*cos(d*x + c)^5)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(11/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {11}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/cos(d*x + c)^(11/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {11}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/cos(d*x + c)^(11/2), x)

Mupad [B] (verification not implemented)

Time = 8.69 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.30 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {70\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {9}{4},\frac {1}{2};\ -\frac {5}{4};\ {\cos \left (c+d\,x\right )}^2\right )+210\,A\,b^3\,{\cos \left (c+d\,x\right )}^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+378\,A\,a\,b^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+270\,A\,a^2\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{315\,d\,{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {\frac {2\,B\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7}+2\,B\,b^3\,{\cos \left (c+d\,x\right )}^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+2\,B\,a\,b^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+\frac {6\,B\,a^2\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5}}{d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {2\,C\,b^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,C\,a\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a^2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((a + b*cos(c + d*x))^3*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(11/2),x)

[Out]

(70*A*a^3*sin(c + d*x)*hypergeom([-9/4, 1/2], -5/4, cos(c + d*x)^2) + 210*A*b^3*cos(c + d*x)^3*sin(c + d*x)*hy
pergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2) + 378*A*a*b^2*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/
4, cos(c + d*x)^2) + 270*A*a^2*b*cos(c + d*x)*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2))/(315*
d*cos(c + d*x)^(9/2)*(1 - cos(c + d*x)^2)^(1/2)) + ((2*B*a^3*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c +
 d*x)^2))/7 + 2*B*b^3*cos(c + d*x)^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2) + 2*B*a*b^2*cos(
c + d*x)^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2) + (6*B*a^2*b*cos(c + d*x)*sin(c + d*x)*hyp
ergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/5)/(d*cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2)) + (2*C*b^3*ell
ipticF(c/2 + (d*x)/2, 2))/d + (2*C*a^3*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c +
 d*x)^(5/2)*(sin(c + d*x)^2)^(1/2)) + (6*C*a*b^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*
cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*a^2*b*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^
2))/(d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2))